1 **Anterior Shoulder Instability**
Spero G. Karas, MD
Head Team Physician- Atlanta Falcons
Associate Professor of Orthopaedics
Director, Orthopaedic Sports Medicine Fellowship
Emory Healthcare Sports Medicine
skaras@emory.edu

2 **Disclosures:**
Spero G. Karas, MD
- **Institutional Support:** DJO, Ossur, Arthrex, Conmed, Smith-Nephew, Mitek
- **Consultant:** DJO, Arthrex, Conmed
- **Royalties:** DJO

3 **Anatomy**
- Labral complex
 • “Bumper”- deepens glenoid
 • Attachment of glenohumeral ligaments

4 **Anatomy**
- Glenohumeral ligaments
 • SGHL- Rotator interval
 • MGHL
 • IGHL
 • Ant and post bands
 • Axillary pouch

5 **Anatomy**
- Rotator Interval
 • SGHL
 • CHL
 • Biceps
6 **Mechanism of Injury**
- FOOSH
- AbER injury
- Direct Trauma

7 **Diagnosis - History**
- Subluxation vs Dislocation
 - ER reduction
 - “Popped it in myself”
 - “Went in and out”

8 **Physical Exam**
- “Load and Shift”
 - Grade 1 - up face
 - Grade 2 - on rim
 - Grade 3 - over rim

9 **Apprehension - Relocation**
- AbER reproduces symptoms
- Posterior directed force relieves symptoms

10 **Sulcus Sign**
- Inferior translation
- Interval lesion
 - Resolves in external rotation?

11 **Pathoanatomy**
- Bankart Lesion
 - Caps-labral complex off glenoid
 - Classic lesion
 - Traumatic Dislocators

12 **Pathoanatomy**
- Bony Bankart Lesion
 - Bankart lesion with anterior glenoid rim fracture

13 **Pathoanatomy**
- ALPSA lesion
• Healed Bankart
• Tension off GH ligaments
• Release and repair anatomically

14 Interval Lesion
• Tear/deficiency of interval capsule
• Restraint to inferior translation
• Sulcus sign

15 HAGL Lesion
• Humeral Avulsion of Glenohumeral Ligaments
• ≈10% of patients
• Pre-op MRI
• Usually open Repair
• Recently Arthroscopic
 Karas, Spang Arthroscopy 2005

16 GLAD Lesion
• Glenolabral Articular Disruption
• Superficial anterior-inferior labral tear
• Associated with anterior-inferior articular cartilage injury

17 Hill Sachs Lesion
• Posterior Humeral Head Defect
• Increased Dislocation Rate
• “Remplissage”
 • Fills defect with infraspinatus

18 Imaging
• Plain Film
 • Orthogonal views
 • Bony Bankart
 • Hill Sachs lesion

19 Imaging
• MRI
 • Capsular anatomy
 • Bankart v HAGL
• Glenoid insufficiency (CT better)
• Interval lesion
• SLAP
• Arthrogram improves technique

20 Principles of Management

1. Recurrence Rates
 • Skeletally immature: near 100%
 • <22: 50-85%
 • 23-40: 25-50%
 • >40: low

2. Sling Management
 • External rotation?
 • Strengthening program
 • Bracing?

21 Non-Op Management

1. Indications
 • Age? Sport? Hill Sachs?
 • In season / pre-season athlete
 • Full ROM and Strength
 • Brace (If not a thrower)
 • Recurrence:
 1.4/athlete/season
 Buss, AJSM, 2004

22 Immobilization:
 Itoi, JSES, 2003

• External Rotation Immobilization
 • F/U 15 mos
 • Recurrence
 • IR- 30%
 • ER- 0
 • Recent information not a favorable…
 • Probably does work better than internal rotation
(Hovelius 1996; Kiviluoto, 1980)

23 Does Arthroscopy Reduce Recurrence?

24

25 Does Arthroscopy Reduce Recurrence?
Evidence Based Answer:
Nonoperative Treatment Has a Higher Recurrence Rate than Arthroscopic Repair

• 131 Primary Dislocators: 5 yr f/u
 • 88 stable
 • 43 unstable
 • 39/43 < 40yo
 • 37/39 contact or overhead
 • 102- No surgery
 • High Risk: young, overhead, contact sports
 • 65% “copers” despite lower outcomes scores
 • “Difficult to justify” in the acute setting

27 Kirkley, et al, JARS, 2005
• 79 month Follow Up
 • Redislocation rate plateaus at 2 years
 • WOSI, DASH, and ASES scores “equalize”
• “Wait and See Approach” in all but the most high risk athletes (kayak, climbing, parachutists)

28 Summary Statement…
1 • Reserve acute stabilization for most “at risk” patients
 • Contact athletes especially young or skeletally immature
 • Much to lose (professional or collegiate careers
 • “At Risk” Avocations/Vocations

2 • Most patients can likely wait to stratify into “recurrent group”
Many will not require surgery

- Low risk of “waiting”
 - Injuries do not progress as time/recurrences increase
 (Cameron, AJSM, 2003)

What About Contact Athletes?
Do the Level I “rules” apply?

How should we approach instability in the contact athlete?

- Answer: We Don’t Know!
- Best available evidence: Equal rates of recurrence regardless of technique
- Data is Poor (Level 3 and Level 4)
- Need Better Studies
- Do what works best in your hands

Surgical Management

- Can arthroscopic instability procedures reproduce open results?
- Yes:
 - Caspari, Savoie, Romeo, Gartsmann
- No:
 - Guanche, Walch

Keys to Arthroscopic Reconstruction

- Diagnosis
 - Hill Sachs, HAGL, Glenoid Insufficiency
- Address labral injury
- Treat capsular redundancy
 - Plication/Shift
 - ETAC
- Interval Closure?
- Rehabilitation
Can Arthroscopy Address Capsular Laxity?

Karas, Creighton, Demorat: JARS 2003

- Arthroscopic Shift
 - Suture Plication- 19%
 - ETAC- 33%
 - Plication + ETAC- 41%
- Used only four tucks and no interval closure

Surgical Technique

Interval Closure

Karas, JARS, 2002

Bone Loss in Instability: The “Off-Track” Lesion

- 83% of “best fit” circle minus glenoid deficiency= D
 - If HSL > D, lesion “off track”
 - Requires management of glenoid deficiency, Hill Sachs deficiency, or both

Open Reconstruction

- Glenoid deficiency
 - Bone Graft
 - Laterjet
- Multiple dislocations
- Large HSL
- Laxity ↑↑

A final word about open reconstruction...

- Mohtadi, N JBJS 2014
• Randomized prospective trial
• Level I Evidence
• No differences:
 • WOSI
 • ASES
• Differences in Recurrence
 • Open- 11%
 • Arthroscopic- 23%

Conclusions
1 • Common Injury
 • Contact Athletes
 • High Recurrence Rates
• Non-operative Rx:
 • Older patients
 • Sport dependent
 • In-season athletes

2 • Surgery Decreases Recurrence Rates
• Open Surgery
 • Multiple Recurrences
 • Large Hill Sachs
 • Glenoid Bone Deficiency